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The concept of the basic reproduction number (R0) occupies a central place in epidemic
theory. The value of R0 determines the proportion of the population that becomes infected
over the course of a (modelled) epidemic. In many models, (i) an endemic infection can persist
only if R0O1, (ii) the value of R0 provides a direct measure of the control effort required to
eliminate the infection, and (iii) pathogens evolve to maximize their value ofR0. These three
statements are not universally true. In this paper, some exceptions to them are discussed,
based on the extensions of the SIR model.
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1. INTRODUCTION

The basic reproduction number (R0) of an infection is
defined by Diekmann & Heesterbeek (2000) as the
‘expected number of secondary cases per primary case
in a virgin population’. In this context, a virgin
population is one that is fully susceptible to the
infection in question. If R0O1, then an epidemic is
expected to occur following the introduction of infec-
tion and if R0!1, then the number infected in the
population is expected to decrease following introduc-
tion and the infection will be eliminated over time.
These concepts are well known, see for example the
books by Anderson & May (1991) and Diekmann &
Heesterbeek (2000). For a formal mathematical discus-
sion of the concept see Diekmann et al. (1990), for a
history see Heesterbeek (2002) and for a recent review
of the formulation, estimation and use of R0 in
deterministic epidemic models see Heffernan et al.
(2005). Although Kermack & McKendrick (1927) did
not use the term ‘basic reproduction number’, or any of
its synonyms, they discussed the concept of an epidemic
threshold and derived the final size equation (2.2). In
their later papers, Kermack & McKendrick discussed
the problem of endemicity. Their combined contri-
bution has been reviewed by Diekmann et al. (1995),
who also remind readers that the SIR model is a special
case, not the Kermack–McKendrick model.

For an endemic infection, the value R0Z1 defines a
threshold. Below this threshold, an infectious agent will
not invade and become established in a previously
uninfected population. Above this threshold, the
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pathogen can invade. It is usually the case that if
R0O1, then an endemic infection will persist in the
host population, and if R0 is subsequently reduced
below 1 by control measures, then the pathogen will be
eliminated. The basic reproduction number is not the
only threshold parameter that may be used to derive
qualitative information about the dynamics of endemic
infections. For some examples, the critical community
size has been used (Anderson & May 1991). For other
infections, notably those with obligatory multi-host life
cycles, the definition of R0 in the model has not been
applied consistently (Roberts & Heesterbeek 2003). For
these cases, it is always useful to formulate the
definition of R0 in words and then translate this into
system parameters. For models expressed as dynamical
systems, the threshold between stability and instability
of the infection-free steady state may be determined by
linearizing the system about the steady state and
finding a combination of parameters that makes all the
eigenvalues of the Jacobian matrix negative (or if
complex numbers, have negative real parts; see texts
on dynamical systems, for example, Strogatz 1994;
Jordan & Smith 1999). This process does not, in itself,
define which combination of parameters should be
called R0 or has the correct biological definition.

In §2, we review the SIR model. We present the SIR
epidemic model and the final size equation, which
determines the proportion of the population that gets
infected in an epidemic as a function of R0. We then
present the SIR endemic model and show that the
infection can persist only if R0O1, and the value of R0

determines the effort required to eliminate an infection
from the population. We introduce the SIR endemic
model with two pathogens and reciprocal immunity,
and show that the pathogens cannot coexist and the
J. R. Soc. Interface (2007) 4, 949–961
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pathogen that excludes the other is that with the
greater value of R0. This implies that a pathogen
evolving through mutation will maximize its basic
reproduction number. All of these results may be found
in the literature. In §3, we review some extensions of the
SIR endemic model in which an infection may persist
even if R0!1. These are (i) the SIR model where those
recovered (in the R-class) are susceptible to infection,
and perhaps more susceptible than those in the S-class,
(ii) the SEI model with exogeneous infection, (iii) an
SIR model with nonlinear transmission, and (iv) a
model with a carriage state. We then discuss structured
epidemic models and the type reproduction number
(T ). We present an example whereR0 by itself does not
determine the control effort required to eliminate
infection, but T does. Finally, we discuss a model for a
fatal infectious disease in a population with a variable
host density.We show that for thismodel, two variants of
a pathogen can coexist and that evolution of the pathogen
is not necessarily in favour of the maximization ofR0.
2. THE SIR MODEL

The so-called SIR model is a special case of the
Kermack–McKendrickmodel (Kermack&McKendrick
1927; Diekmann & Heesterbeek 2000). A population of
constant size is divided into three compartments, with
the proportion susceptible or infectious at time t equal to
s(t) or i(t), respectively. The proportion ‘removed’ from
the infection process is r(t)Z1Ks(t)Ki(t).
2.1. The SIR epidemic model

In many situations, the time-scale of the infection is
much faster than the demographic time-scale. For
example, epidemics of measles or influenza take place
over a matter of months, with each infected individual
participating for less than a month (e.g. Roberts &
Tobias 2000; Roberts et al. 2007). In a human
population, the demographic time-scale is measured
in tens of years. Hence, as an approximation, we can
ignore population dynamics and consider the SIR
epidemic model

ds

dt
ZKbsi;

di

dt
Z bsiKgi:

ð2:1Þ

The parameters b andg are rates and have units timeK1.
If the population is fully susceptible, then sZ1, and
those infected infect others at an expected rate b for an
expected time 1/g. Hence R0Zb/g. Solutions to
equations (2.1) may be plotted in an (s, i ) phase plane
by observing that

iðtÞCsðtÞK 1

R0

log sðtÞZ const:

An epidemic occurs ifR0s(0)O1, and in the (s, i ) plane
this may be represented as a curve from the point
(s(0), 0) to the point (s(N), 0). (Strictly, this is
a heteroclinic trajectory. For details, see texts
J. R. Soc. Interface (2007)
on dynamical systems, for example, Strogatz 1994;
Jordan & Smith 1999.) The proportion infected in an
epidemic is zZs(0)Ks(N), where

R0 C
1

z
log 1K

z

sð0Þ

� �
Z 0: ð2:2Þ

It is easy to show that z is an increasing function of R0

(Diekmann&Heesterbeek 2000). Equation (2.2) is often
known as the final size equation and provides an
approximation to the number infected in an epidemic
as determined by more complicated models (Roberts
et al. 2007). For example, if the whole population
is initially susceptible (s(0)Z1) and R0Z2, then
zZ0.7968, and nearly 80% of the population is infected
in the course of an epidemic.
2.2. The SIR endemic model

If the time-scale of the infection is of the same order as
the demographic time-scale, we need to consider the
SIR endemic model. One example would be tubercu-
losis, where the infection may persist for years (Blower
et al. 1995; Gomes et al. 2004). In its simplest form, with
constant and equal birth and death rates (m), the
equations are

ds

dt
ZmKbsiKms;

di

dt
Z bsiKgiKmi:

ð2:3Þ

For this model, those infected infect others for an
expected time 1/(gCm), hence R0Zb/(gCm).
Equations (2.3) have two steady states, (s, i )Z(1, 0)
and (s, i )Z(s�, i�)Z(1/R0, m(1Ks�)/(gCm)). As s� is
a proportion, the endemic steady state (s�, i�) makes
biological sense only if R0O1, and it is then globally
attracting (appendix A.1). IfR0!1, then the infection-
free steady state (1, 0) is globally attracting; hence, the
objective of an infection eradication programme must
be to reduce R0 below 1. If this is to be achieved by
vaccinating a proportion v of the population at birth,
then (2.3)1 becomes

ds

dt
Z ð1KvÞmKbsiKms;

and no endemic steady state exists if vO1K1/R0. If
eradication is to be achieved by treating infecteds at a
rate q, then (2.3)2 becomes

di

dt
Z bsiKgiKmiKqi;

and no endemic steady state exists if q/(gCm)OR0K1.
Hence, the value of R0 provides a direct measure of the
control effort required to achieve eradication.
2.3. The SIR endemic model with competition

Now consider the case where two pathogens exist and
there is total reciprocal immunity: infection or having
been infected with one excludes infection with the
other. Such a situation could arise, for example,
with two competing strains of the same pathogen.
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The population is now divided into four compartments,
with sCi1Ci2CrZ1, and

ds

dt
ZmK b1si1K b2si2Kms;

di1
dt

Z b1si1Kg1i1Kmi1;

di 2
dt

Z b2si 2Kg2i 2Kmi 2:

ð2:4Þ

For equations (2.4), coexistence, in the form of steady
states with both i �1 and i �2 non-zero, is not possible
(unless R1

0ZR2
0, see appendix A.2). The steady

state with pathogen 1 present and pathogen 2 absent
ði �1s0; i �2Z0Þ exists when R1

0O1 and is stable if

R1
0OR 2

0. Hence, if a pathogen undergoes a mutation
that increases R0, then the new variant will out-
compete the original variant.

Recall that for the SIR endemic model (2.3), R0Z
b/(mCg). We can write bZpk, where p is the
probability of transmission given contact and k is the
contact rate. It is reasonable that k0(p)%0, if somebody
is perceived to be infectious they and others may take
steps to reduce contact. Hence, we could write either
b 0(p)%0 or b 0(p)R0. In addition, either of g0(p)%0 or
g 0( p)R0 could be reasonable, a highly infectious
pathogen may persist in the host for longer or may
result in a short severe illness. Dieckmann et al. (2002)
use p as a measure of matching virulence and g as a
measure of aggressive virulence. With either measure,
maximizing R0 is not the same as maximizing
virulence.

In this section, we have demonstrated that for an
SIR model, an epidemic will occur if R0O1 and the
number infected in an epidemic is an increasing
function ofR0. We have also shown that (i) an endemic
infection can persist only if R0O1, (ii) the value of R0

provides a direct measure of the control effort needed to
eliminate the infection, and (iii) a pathogen evolves to
maximize R0. In the following sections, we discuss
various extensions to the SIR model that result in
exceptions to these three conclusions.
3. SUBCRITICAL PERSISTENCE

In this section, we review some models in which a
pathogen may invade an uninfected host population
only if R0O1, but an endemic infection may persist for
some values of R0!1. The first two examples are
special cases of a model with exogenous reinfection and
treatment effects proposed for tuberculosis by Feng
et al. (2000). In their model, the population had a
constant recruitment rate into the susceptible (S )
class, proceeded to the exposed (E ) class upon
exposure to infection and then to the infectious (I )
class. Those in the infectious class were treated at a
constant rate and joined a recovered class, labelled T
for treatment. As described, this is a standard SEIR
model. However, there were two added features. If an
individual in the E -class was reexposed to infection,
then their transition rate to the I-class increased;
hence, reexposure accelerated the development of
J. R. Soc. Interface (2007)
infectiousness. If an individual in the T-class was
reexposed to infection, then they could return to the
E-class; hence, the treated class remained susceptible
to infection. Each of the first two models described
below is a special case of this system with just one of
these features, and in each, it is possible that an
infection persists even though R0!1. Hence, the
model of Feng et al. (2000) has two features that can
lead to a backward bifurcation and subcritical
persistence of infection.

These two examples involve, in some sense, a force of
infection that is not proportional to the proportion of the
population infectious as it is in the SIR model. In
the third example, this is made explicit in that instead of
lZbi we take lZbi(1Ch(i )) for some non-decreasing
function h. This option is used as an approximation for
situations where the force of infection is somehow ‘dose
dependent’, and a higher prevalence of infection is
correlated with a higher exposure to the pathogen on
infection. Gomes et al. (2005) suggest that this
mechanism may apply to the epidemiology of measles,
polio and foot-and-mouth disease among others, and
that infectiousness with tuberculosis may increase with
the intensity and frequency of exposure.

The fourth example of a model that may lead to the
subcritical persistence is based on one analysed by
Medley et al. (2001) and used to describe the dynamics
of hepatitis B. This SEIR model had the features that a
proportion of births to mothers in a carrier class are also
carriers and a proportion of the infectious class become
carriers upon recovery. The carriers continue to be
infectious and the proportion of infectives who become
carriers is a non-decreasing function of the force of
infection. We simplify the model by ignoring the
exposed class and vaccination, which was also a feature,
and assuming vertical transmission to be negligible. We
show that the maintenance of carriers in the host
population may lead to persistence after R0 is reduced
below 1. In §4.1, we consider the same model but with
vertical transmission included as an example of a model
with structure.

For the examples discussed in this section,weuseR0 as
the primary bifurcation parameter. This enables us to
distinguish different qualitative behaviour of the models
for different parameter values. In some instances, this
leads us to what could strictly be regarded as loose
terminology, for example suggesting that R0 increases
from one value to another where we intend to contrast
situations whereR0 may be lower or higher, respectively.
Hence, infigures 1and2,whereR0 is allowedtovaryalong
thehorizontal axes, this is doneby changingbandkeeping
all otherparameters constant. In§§3.1, 3.2, 3.4 and4.1,we
useP asa secondarybifurcationparameter.Ateachuse,P
is defined and the definition should be regarded as local to
§3.1, §3.2, or §§3.4 and 4.1 as appropriate.
3.1. A model with a susceptible R-class

This is a special case of the models examined by Feng
et al. (2000), which also included an exposed class (see
§3.2), and Gomes et al. (2005), which also included
nonlinear transmission (see §3.3). It is equivalent to
that discussed by Safan et al. (2006). The recovered
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Figure 2. Bifurcation diagram for the carriage model. The
curves are 1Ks� as a function of R0, broken lines signify
unstable steady states and unbroken lines stable steady
states. Curves are plotted for PZ0 (lower curve), PZPcrit

(shown in grey) and PZ2Pcrit (upper curve), together with
the trivial steady state sZ1. Parameter values are gZ0.05,
mZ1/70, dZ0.025 and kZ1. The function q(x)Zexp(KxK1),
where xZb(i�CPc�)/m (appendix A.6) and PcritZ0.8. For
explanation of the lettering see the text.
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Figure 1. (a) Bifurcation diagram for the model with a
susceptible R-class. Curves are top s� and bottom i� as
functions of R0. Broken lines signify unstable steady states
and unbroken lines stable steady states. Curves are plotted for
PZ0 (forward bifurcation), PZPcrit (shown in grey) and
PZ2Pcrit (backward bifurcation), together with the trivial
steady state sZ1, iZ0. Other parameters are mZ0.02 and
gZ0.05. (b) An enlargement of the (R0, i

�) curve for
PZ2Pcrit, showing the possibility of a hysteresis effect. For
explanation of the lettering see the text.
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class is assumed to be susceptible to infection and,
possibly, more susceptible than the susceptible class
(hence, in this example it is not removed from the
epidemic). We write

ds

dt
ZmKbsiKms;

di

dt
Z bsiCPbriKðmCgÞi;

ð3:1Þ

with r(t)Z1Ks(t)Ki(t) and R0Zb/(mCg) as before.
The parameter P is the ratio of the susceptibility of
the recovered class to that of the susceptible class. If
R0O1, then the endemic steady state (s�, i�) is the
solution of a quadratic equation, leading to the
possibility of multiple steady states and bistability
(appendix A.3). An endemic steady state exists and is
locally stable for some values of R0 less than 1 if PO
J. R. Soc. Interface (2007)
PcritZ1Cm/g. A bifurcation diagram for this model is
shown in figure 1a.

Figure 1a demonstrates how the steady-state values
(s�, i�) of equations (3.1) depend on R0 and P. For all
values of P, the infection-free steady state is stable for
R0!1 and unstable for R0O1. When P!Pcrit and
R0O1, there is a unique globally stable endemic
steady state (s�, i�). However, if POPcrit, the locus of
steady states leaves the bifurcation point at R0Z1 to
the left (backwards) with an unstable steady state
(shown as broken), then changes direction and
becomes stable. At PZPcrit, these curves leave the
bifurcation point vertically (shown in grey) and this
separates two qualitatively different behaviours. For
P!Pcrit, the stable steady-state solutions of equations
(3.1) change continuously as R0 is increased or
decreased through the critical value R0Z1. The
behaviour for POPcrit is further illustrated in
figure 1b. As R0 is increased through R0Z1, the
stable steady-state value of i increases discontinu-
ously, moving from the infection-free solution to the
endemic solution i�. In figure 1b, this is shown by the
line starting with R0!1 at ‘a’, through the critical
value R0Z1 where it jumps from the infection-free
steady state at ‘b’ to the endemic steady state at ‘c’,
then further increasing R0 increases the value of i� to,
say, ‘d’. If R0 were then decreased, the value of i�

would decrease along the solid curve shown in
figure 1b from ‘d’ to ‘e’, remaining positive at and
below R0Z1 in the portion from ‘c’ to ‘e’. At ‘e’,
another discontinuous change would occur as the only
steady state possible is iZ0 and the system moves to
‘f’. Hence, increasing and then decreasing R0 through
the bifurcation point could cause a hysteresis effect
with two discontinuous changes, for example moving
around figure 1b in the sequence ‘f,b,c,e,f’.
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3.2. A model with exogenous infection

For the second special case of the model by Feng et al.
(2000), we reinstate the exposed class, ignore the
treated (recovered) class and restore the mechanism
of exogenous reinfection: exposure to infection accel-
erates transition from E to I at a rate proportional to
the force of infection, that is from n to nCPbi for some
constant P. Feng et al. (2000) suggest that P!1 might
be appropriate for tuberculosis, but PO1 could be
appropriate for HIV. The equations are written as

ds

dt
ZmKbsiKms;

de

dt
Z bsiKPbeiKðmCnÞe;

di

dt
ZPbeiCneKmi;

ð3:2Þ

with s(t)Ce(t)Ci(i )Z1. Hence, this model is two
dimensional and, if PZ0, is a standard SEI model.
For all values of P, the basic reproduction number is
R0Zbn/(m(mCn)). Equations (3.2) have a bifurcation
diagram similar in appearance to figure 1a, with a
backward bifurcation at (R0, i )Z(1, 0) occurring if
POPcritZn(mCn)/m2 (appendix A.4).
3.3. A model with nonlinear transmission

Gomes et al. (2005) provide an extensive analysis of
epidemic models with nonlinear transmission and
partial or temporary immunity. Here, we focus on the
nonlinear or enhanced transmission. The equations are
written as

ds

dt
ZmKlsKms;

di

dt
Z lsKðmCgÞi;

ð3:3Þ

with r(t)Z1Ks(t)Ci(t) as before, but with lZ
bi(1Ch(i )). We assume that h(0)Z0 and h0(i )R0,
hence we still haveR0Zb/(mCg). Equations (3.3) also
have a bifurcation diagram similar in appearance to
figure 1a, with a backward bifurcation at (R0, i

�)Z
(1, 0) if h 0(0)O1Cg/m (appendix A.5).
3.4. A model with a carrier class

For our simple example, a proportion q of the infectious
class enters a carrier class upon recovery and carriersmay
still transmit infection. The others (proportion 1Kq)
enter the removed class. The model may be written as

di

dt
Z lsKðmCgÞi;

dc

dt
Z qgiKðmCdÞc;

dr

dt
Z ð1KqÞgiCdcKmr ;

ð3:4Þ

with s(t)Z1Ki(t)Kc(t)Kr(t). The force of infection is
lZb(iCPc) for some constantP. Hence,P is the ratio of
the infectivity of an individual in the carrier class to the
J. R. Soc. Interface (2007)
infectivity of an individual in the infectious class.
Motivated by hepatitis B, where the proportion of those
who become carriers upon recovery is higher when the
force of infection is higher (Medley et al. 2001), we take q
to be a non-decreasing function of l (appendix A.6). If
q(0)Z0, then R0Zb/(mCg) as in the previous models
discussed. If not, then even at low infection prevalences, a
proportion qg/(mCg) of infectives become carriers and
infect susceptibles at the rate Pb for a mean duration
of 1/(mCd) years. Adding this contribution, R0Z
(b/(mCg))(1CPgq(0)/(mCd)).Thebifurcationdiagram
is similar in appearance to figure 1a, with a backward
bifurcation at (R0, i)Z(1, 0) occurring if POPcritZ
(mCd)/((q0(0)Kq(0))g) (appendix A.6).

Hence, we have shown that there are at least four
mechanisms that would allow an endemic infection to
persist even though R0!1: (i) enhanced susceptibility
of those recovered, (ii) exogenous reinfection of those
exposed, (iii) nonlinear transmission of infection, and
(iv) the existence of a carrier class.
4. STRUCTURED MODELS

We now consider the situations where more than one
type of infective can be identified. By type wemean type
at birth, an attribute that makes two infectives
epidemiologically distinct (Diekmann & Heesterbeek
2000). For example, in the previous model specified by
equations (3.4), although infectives and carriers trans-
mit infection at different rates, all carriers were
previously infectives. Hence, they are not distinct
types. However, if a proportion of those born to carriers
are themselves carriers, we then have two types: those
infected through contact and those infected at birth.
This is the next example considered.

In general, suppose we can identify n distinct types
of infective. We construct the n!n next-generation
matrixK by defining the elementKj[ to be the expected
number of infectives of type j that would arise from an
infective of type [ in a fully susceptible population.
Hence, K is a matrix whose entries are reproduction
numbers of some sort and R0 is defined as the spectral
radius (largest eigenvalue) of K. For a full discussion
see Diekmann & Heesterbeek (2000).
4.1. Type at infection

Consider the model for an infectious disease with
carriage described by equations (3.4) and add a second
transmission route by allowing that a proportion k of
those whose mothers are carriers are born carriers. The
system becomes

di

dt
Z lsKðmCgÞi;

dc

dt
Z kmcCqgiKðmCdÞc;

dr

dt
Z ð1KqÞgiCdcKmr ;

ð4:1Þ

with s(t)Z1Ki(t)Kc(t)Kr(t), lZb(iCPc) and q an
increasing function of l as before. We can now identify
two types of infectious hosts. Define an infectious host of
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Type 1 by having been infected through contact and an
infectious host of Type 2 by having been infected at birth.
The next-generation matrix is calculated as follows.

K1,1: infectious hosts infect others at rate b and
remain infectious for an expected 1/(gCm)
years. A proportion qg/(gCm) of infectious
hosts recover to become carriers, who then infect
others at rate Pb, and remain carriers for an
expected 1/(dCm) years.

K1,2: the mean number of susceptible hosts infected
by each carrier is Pb/(dCm).

K2,1: on recovery, a proportion qg/(gCm) of infec-
tious hosts become carriers and remain carriers
for 1/(dCm) years. All hosts give birth at rate m,
and a proportion k of those born to carriers are
carriers.

K2,2: the mean number of carriers born to each carrier
is km/(dCm).

The basic reproduction number R0 is the spectral
radius of

K Z

b

gCm
C

qð0Þg
gCm

Pb
dCm

Pb
dCm

qð0Þg
gCm

km

dCm

km

dCm

0
BBBB@

1
CCCCA: ð4:2Þ

An example of the behaviour of this model is presented
in figure 2. The figure shows three bifurcation curves,
plotting steady-state values of 1Ks� againstR0. This is
equal to the proportion of the population who have been
infected (i�Cc�Cr �). For all values of P and R0, we
have the trivial steady state sZ1, which is stable for
R0!1 and unstable for R0O1. For PZ0, the carriers
do not transmit infection and R0Zmax(b/(gCm),
km/(dCm)). The second term is always less than
1, hence when above threshold R0Zb/(gCm)
(appendix A.6). The diagram shows a unique non-
trivial steady state for R0O1. At a critical value of P,
there is an inflection in the bifurcation curve (shown in
grey) and this separates two qualitatively different
behaviours. If POPcrit, then there is the possibility of
multiple steady states for a given value ofR0. This does
not correspond to a backward bifurcation at R0Z1, as
the curve leaves the trivial solution in a forward
direction at ‘a’. However, at some R0O1, the curve
moves through the vertical at ‘b’, goes backward and
the steady state becomes unstable. This continues until
‘c’, where the curve reverses direction again and the
steady state becomes stable. For the example shown in
figure 2, R0!1 at ‘c’, hence persistence of infection is
possible for someR0!1. For values ofR0 between that
at ‘c’ and that at ‘b’, there are two stable steady states,
and the limiting state for large t is determined by initial
conditions. This model could still exhibit hysteresis:
beginning fromR0!1 and sZ1 then increasingR0, the
endemic steady state is realized at R0Z1 ‘a’ and 1Ks�

increases until ‘b’, where there is a discontinuous
transition to the upper (stable) steady state. If R0 is
then decreased, the steady-state solution maintains the
upper curve until ‘c’, where for lower values of R0 only
the trivial steady state exists.
J. R. Soc. Interface (2007)
4.2. A model with two hosts

Infections that have obligatory two-host life cycles
include those transmitted by vectors, such as dengue
and malaria, and similar models may be used for those
transmitted sexually.Motivated by the simplest example
of a sexually transmitted infection in a population of
constant size, we analyse a two-host SIS model

di f
dt

Z bmsf imKgf i f ;

dim
dt

Z bfsmi fKgmim;

ð4:3Þ

with sfZ1Ki f and smZ1Kim. A stable endemic steady
state exists for R0O1, where (appendix A.7)

R0 Z

ffiffiffiffiffiffiffiffiffiffiffi
bfbm

gfgm

s
:

The ratio bf/gf is the expected number of males that
would be infected by an infectious female if all males were
susceptible, with a similar interpretation for bm/gm.
Hence, R0 is the geometric mean of two R0-like
quantities. For models of this type, the definition of the
basic reproduction number has not been used consist-
ently in the literature. For example, compare Feng &
Velasco-Hernandez (1997) and Soewono & Supriatna
(2001) with Esteva & Vargas (1998, 2000).

Now consider the model described by equations
(4.3), but extended to include two competing variants
of the pathogen. The equations become

di fj
dt

Z bmjsfimjKgfj i fj ;

dimj

dt
Z bfjsmi fjKgmj imj ;

ð4:4Þ

for jZ1, 2, with sfCi f1Ci f2ZsmCim1Cim2Z1. For a
steady state with both variants present R1

0ZR 2
0,

and the state with variant 1 only present is stable if
R1

0OR2
0 (appendix A.8). Hence, this model suggests

that as a sexually transmitted infection mutates, the
fittest variant is the one that maximizes R0.

The results presented so far for the two-host SIS
model suggest a similarity with the results for the
endemic SIR model. The direct connection between R0

and the control effort required to eliminate infection has
been lost however, and, in particular, when we
introduce a third group of hosts. We now extend the
model, letting the subscript p denote a high-risk female
group. We assume that those in this group are P times
more likely to transmit infection to males than those in
the other female group, where P is a constant.
Equations (4.3) become

dip
dt

Z bpspimKgpip;

di f
dt

Z bmsfimKgf i f ;

dim
dt

Z bfsmðPip C i fÞKgmim:

ð4:5Þ
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We define R0 as the spectral radius of the next-
generation matrix

K Z

0 0
bp

gm

0 0
bm

gm

P bf

gp

bf

gf

0

0
BBBBBBBBB@

1
CCCCCCCCCA
:

Hence

R0 Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K13K31 CK23K32

p
:

Suppose now that a proportion v of the high-risk group
is protected from infection, by vaccination or some
other prophylactic measure. Then, the basic reproduc-
tion number under vaccination becomes

Rv Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1KvÞK13K31 CK23K32

p
: ð4:6Þ

Alternatively, if the high-risk group is treated at a rate
q, the equation for that group becomes

dip
dt

Z bpspimKgpipKqip; ð4:7Þ

and the basic reproduction number under treatment
becomes

R c Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gp

gp Cq
K13K31 CK23K32

r
: ð4:8Þ

Neither Rv nor R c on their own specify the control
effort necessary to eliminate infection from the
population.
4.3. The type reproduction number

When calculating R0 in a multi-host situation, one is
effectively averaging over all host types by taking the
eigenvalue of K. When applying control measures
unevenly across the host types, the previous direct
relationship between R0 and control effort is lost. This
difficulty can often be overcome by using the type
reproduction number (T ), defined as the number of
secondary infections of Type 1 that would arise from a
single primary infection of Type 1 introduced to a fully
susceptible population (Roberts & Heesterbeek 2003;
Heesterbeek & Roberts 2007). In our example
(equations (4.5)), we define T for the high-risk group
(Type 1, subscript p) by

T Z ½KðIKðIKPÞKÞK1�11; ð4:9Þ

with P11Z1, PijZ0 otherwise. Hence T Z
K13K31/(1KK23K32). It has been shown (Roberts &
Heesterbeek 2003) that T !1 if and only if R0!1.
Moreover, if a proportion v of the high-risk group is
protected from infection, then the type reproduction
number becomes T vZ(1Kv)T , and to eliminate the
infection we require vO1K1/T . Moreover, if the
infecteds in the high-risk group are treated at a rate q

(equation (4.7)), then the type reproduction number
becomes T cZ(gp/(gpCq))T , and to eliminate the infec-
tionwe require q/gpOT K1.Given T , the expressions for
J. R. Soc. Interface (2007)
T v and T c provide direct measures of the critical control
effort. These are much easier to apply than those derived
from the basic reproduction number under control
(equations (4.6) and (4.8)). This methodology is readily
extended to the situationwhere control is applied tomore
than one host type (Roberts & Heesterbeek 2003).

In summary, for the multi-host model, if R0!1, the
pathogen cannot invade the host population and the
pathogen evolves to maximize R0. The value of R0 is
determined by averaging over all host types, but this
definition is not applied consistently in the literature
and does not directly determine the control effort
required to eliminate infection. The type reproduction
number (T ) focuses on a particular host type and
provides a direct measure of the control effort required
to eliminate the infection.
5. WILDLIFE INFECTIONS

Let N denote the size of the host population or more
properly the number of hosts in a given geographical
region (measured as host density). We relax the
assumption that the host population size is constant.
As a consequence, the host birth and death rates, and
the contact rate between hosts, may be functions of
N(t). The birth and death rates are non-increasing and
non-decreasing functions (h 0(N )%0 and m 0(N )R0),
respectively, with a unique solution of the equation
h(N )Zm(N ) at NZK being the host population
carrying capacity.

Recall that we can write the transmission rate (b) as
the product of the contact rate (k) and the probability
of transmission given contact (p). The contact rate is
now a non-decreasing function of host population
density, hence we have b 0(N )R0. Common functional
forms are b(N ) constant, often called frequency-
dependent transmission, and b(N )fN, often called
density-dependent transmission. Other terms such as
mass action, pseudo mass action and standard inci-
dence have appeared in the literature.

A model for a fatal infection in a wild animal
population was analysed by Roberts (1996). The
equations for the host population density and the
proportion of hosts infectious are written as

dN

dt
Z ðhðN ÞKmðNÞKaiÞN ;

di

dt
Z bðN ÞsiKðasChðNÞÞi;

ð5:1Þ

with sCiZ1. A brief derivation is given in appendix
A.9. The basic reproduction number R0 is calculated
at carrying capacity, R0ZR(K ), where R(N )Z
b(N )/(aCm(N )). This model has another threshold
quantity: if b(0)/(aCh(0))O1, then a steady state
exists with NZ0 but is0. It may be thought strange
that the contact rate could be positive when the host
population density is zero, but this may be interpreted
as the infection driving the host population to extinc-
tion. A unique endemic steady-state solution with
N �s0 and 0!i�!1 exists if R0O1 (appendix A.9).
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Control procedures may be incorporated in this
model as before. If infecteds are treated at a rate q, no
endemic steady state exists if q/(aCm(K))OR0K1. If a
proportion v of the host population is maintained
vaccine immune, then no endemic steady state exists if
vO1K1/R0. If the host species is regarded as a pest,
then it is an option to eliminate infection by culling
animals, say at a rate c, and no endemic steady state
exists if b(N )/(aCh(N ))!1, where h(N )Zm(N )Cc.

We now consider small mutations in the pathogen.
With two variants, equations (5.1) become

dN

dt
Z ðhðNÞKmðNÞKa1i1Ka2i2ÞN ;

di j
dt

Z bjðNÞsi jKðaj ChðNÞKa1i1Ka2i2Þi j ;
ð5:2Þ

for jZ1, 2, with sCi1Ci2Z1. A similar model (with h

constant and bfN ) was analysed by Andreasen &
Pugliese (1995). Define R j(N )Zbj(N )/(ajCm(N )) for
jZ1, 2. Then, R j(K) is the basic reproduction number
for pathogen j in the absence of the other pathogen.
Clearly, the infection-free steady state is stable if
R1(K )!1 and R2(K )!1. There is a steady state with
pathogen 1 only present if R1(K )O1, at which
ðN ; i1; i2ÞZðN �

1 ; i
�
1; 0Þ. This is stable if R2ðN �

1 Þ!1
(appendix A.10). Similarly, the steady state with
pathogen 2 only present exists if R2(K )O1 and is
stable if R1ðN �

2 Þ!1. However, there is now a third
possibility: a steady state with both pathogens
present. Numerical results show that this coexistence
steady state exists and is stable whenever both single-
pathogen steady states exist but are unstable. This is
only the case for a limited range of parameter values. If
pathogen variant 1 only is present, then variant 2 can
invade if R2ðN �

1 ÞO1, but this is not the same as
R2(K )OR1(K ). In contrast to the model with
constant population size, the established parasite has
a role in determining a modified carrying capacity, N �

1 ,
and it is not necessary that the pathogen with the
largest basic reproduction number excludes the other.
The order in which the pathogens are established in
the host population matters.
6. DISCUSSION

The basic reproduction number (R0) remains the
single-most useful quantity to calculate or estimate
when modelling the population dynamics of an
infectious disease. For simple models, and these are
sufficient in many practical situations, it is true that
(i) the value of R0 determines whether a pathogen
may invade or persist in a host population, (ii)
pathogens evolve to maximize R0, and (iii) the
value of R0 provides a direct measure of the control
effort required to eliminate the infection. The purpose
of this review has been to draw attention to some
situations where these properties do not always apply,
and where possible to indicate additional or alterna-
tive quantities that define the qualitative epidemiol-
ogy of the pathogen.
J. R. Soc. Interface (2007)
In all of the examples of models for single
pathogens that we have discussed, it is true that if
R0 for the pathogen is less than 1, then the pathogen
will not invade and infect a previously uninfected and
completely susceptible host population. It is often also
true that if R0 for the pathogen is reduced below 1,
then a pathogen that was previously present in the
host population will be eliminated. The examples
based on models proposed for tuberculosis and other
infections by Feng et al. (2000) and Gomes et al.
(2005) exhibit backward bifurcations leading to
subcritical persistence for some parameter values
(figure 1), and it is not sufficient to reduce R0

below 1 to eliminate the infection. Some of these and
other examples have been discussed by van den
Driessche & Watmough (2002). The model proposed
by Medley et al. (2001) could lead to subcritical
persistence, but without a backward bifurcation at
R0Z1 (figure 2). The paper by Safan et al. (2006) is
of particular interest here, as it presents a method for
determining the control effort required to eliminate an
infection from a host population when subcritical
persistence may occur.

The definition of R0 in two-host populations has
often led to confusion, even if the threshold property
itself has remained the same. For example, in a model
for malaria or dengue, we could define a next-
generation matrix K with K12, the expected number
of humans infected by an infectious mosquito, and K21,
the expected number of mosquitoes infected by an
infectious human, both in a fully susceptible popu-
lation. The diagonals of K equal zero, hence
R0Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K12K21

p
. Taking a geometric mean number of

humans and mosquitoes seems a strange thing to do,
although it is a valid threshold quantity. The type
reproduction number T ZR2

0 is both the expected
number of secondary infections in humans that would
arise from a primary infected human and the expected
number of secondary infections in mosquitoes that
would arise from a primary infected mosquito, both in a
fully susceptible population. It is T that provides a
direct link with the control effort required to eliminate
infection (Heesterbeek & Roberts 2007). A similar
problem arises in the definition of a threshold quantity
for macroparasites. A naive definition based on
individual stages in an obligatory life cycle can result
in the value of the analogue of R0 depending on the
level of detail in the model, which is at odds with a
property having a biological definition (Heesterbeek &
Roberts 1995a). Once again, it is the definition that is
altered but not the threshold property.

Many models of the evolution of an infectious disease
have led to the conclusion that the fittest variant of a
pathogen is the one that maximizesR0. However, it has
previously been demonstrated that in situations where
a pathogen may change the population dynamics of the
host, the order in which the variants are established is
important (Dieckmann et al. 2002). This was also
shown for communities of parasitic helminths in wild
animal populations by Roberts & Dobson (1995).
Dieckmann & Metz (2006) present examples of simple
models of infectious disease where the evolutionarily
stable strategy does not maximize R0. Another
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instance where a pathogen may, in theory at least,
evolve towards a lower value of R0 has been discussed
by Kao (2006), where the seemingly anomalous
behaviour is linked to the ability to exploit hetero-
geneities in the host population.

In this exposition, we have assumed the environ-
ment to be static, and therefore all models discussed
have been autonomous. This is often not appropriate.
For example, epidemics of measles occur during the
school year (Roberts & Tobias 2000) and a model
requires a seasonal variation in transmission par-
ameter b(t). Heesterbeek & Roberts (1995b) addressed
this problem by way of Floquet theory, which requires
defining a discrete map from year to year. A similar
approach was taken for a model with birth pulses by
Roberts & Kao (1998). In contrast, Grassly & Fraser
(2006) defined a quantity �R0ZgK1

Ð 1
0 bðtÞdt,

appealing to the result that if i(t) solves the equations
i0Zb(t)iKgi and �R0!1, then limt/Ni(t)Z0. This
does not make �R0 equal to the basic reproduction
number. The definition of R0 in a periodic environ-
ment is difficult—both of the methods mentioned
above assume that the primary case is equally likely to
arise at any time during the year. If the infection is
seasonal on a global scale, then the introduction of a
primary case will be more likely in the high season for
the epidemic. Grassly & Fraser (2006) acknowledge
this. They also criticize the Floquet approach as
requiring that the Poincaré map be calculated and
hence the equations must be solved numerically over
one time period. Many packages are available that will
do this as easily as calculating an eigenvalue, so that is
no impediment to the method.

Throughout the exposition, we have also assumed
that the population is large and the unit is the
individual host. In some applications, it is more
appropriate to take the unit as the household (e.g.
Ball & Becker 2006) or farm (e.g. Haydon et al. 2003) or
some other entity. There is increasing interest in
modelling epidemics on networks (e.g. Kiss et al.
2006; May 2006). In a network model, a node can
represent any entity that may be considered suscep-
tible, infectious, etc. and a link between nodes indicates
a potential for infectious contact between the two
entities. Spatial heterogeneity can be explicitly rep-
resented in this way. A useful result for a random
network is that if all links represent the same
probability of transmission, and g( j ) is the number
of nodes that have j links, then R0fmean(g)C
var(g)/mean(g). Homogeneous mixing is equivalent
to assuming that all nodes are connected and var(g)Z0,
hence heterogeneity in a network serves to increaseR0.
A network, by its very nature, is finite in size, so it is not
immediately apparent how concepts such as R0 that
are based on large (infinite) populations translate, and
how their properties may be adapted to finite
structures. In addition, all of the results that we have
cited have been for deterministic models. For finite
populations, stochastic models are appropriate, but
results for these are much more difficult to obtain and
they are beyond the scope of this review.

In conclusion, we have reviewed the concept of the
basic reproduction number R0 in simple deterministic
J. R. Soc. Interface (2007)
models of the dynamics of infectious diseases. We
have shown that if R0!1, a pathogen cannot invade
a host population, but mechanisms exist by which a
pathogen may persist if R0!1. We have also shown
that for structured populations, the type reproduction
number (T ) provides a direct measure of the control
effort required to eliminate an infection and has the
same threshold property as R0. And finally, we have
shown that pathogens usually evolve to maximize R0,
but this may be modified by host population
dynamics.

The author has had many fruitful and stimulating discussions
on these topics with Odo Diekmann, Klaus Dietz, Hans
Heesterbeek and Hans Metz. Yue Zhao assisted with
computations. Comments from four anonymous referees
have led to considerable improvements in the paper.
APPENDIX A
A.1. The SIR endemic model

The results quoted require the global asymptotic stability
of the steady states. Clearly, if sZ0, ds/dtO0; if iZ0,
di/dtZ0, and all higher derivatives of i are zero; and if
rZ0,dr/dtR0.Hence, if (s(t), i(0))02U, where theprime
signifies transpose, and UZ{x2R

2 : x1, x2R0 and x1C
x2%1}, then (s(t), i(t))02U for tO0. Then, to establish
global stability of steady states, with or without treat-
ment and vaccination, Dulac’s criterion may be used
(Edelstein-Keshet 2005, pp. 327–330). As

v

vs

ð1KvÞmKbsiKms

si

� �
C

v

vi

bsiKgiKmiKqi

si

� �

ZK
ð1KvÞm

s2i
!0;

no limit cycles exist, and a steady state that is locally
stable is also globally stable. The Jacobian matrix
corresponding to equations (2.3), with both treatment
and vaccination included, is

J Z
KbiKm Kbs

bi bsKgKmKq

 !
:

The infection-free steady state is (s, i )Z(1Kv, 0), which
is stable if the matrix J evaluated at the steady state has
negative eigenvalues, i.e. if (1Kv)b!gCmCq, which is
equivalent to (1Kv)R0!1Cq/(gCm). The expressions
for the critical vaccination and treatment efforts follow.
Note that the eigenvalues ofJ do not define an expression
forR0.
A.2. The SIR endemic model with competition

For equations (2.4), coexistence, in the form of a steady
state ðs; i1; i2ÞZðs�; i�1 ; i �2Þ with both i�1 and i �2 non-
zero, would require s�Zðg1CmÞ=b1Z1=R1

0 from
(2.4)2, s

�Zðg2CmÞ=b2Z1=R 2
0 from (2.4)3, and hence

R1
0ZR2

0. Consider the steady state with i �1s0
and i �2Z0, which exists when R 1

0O1. Solutions
to (2.4) near to the steady state may be
written ðsðtÞ; i1ðtÞ; i2ðtÞÞ0Z ðs�; i�1 ; 0Þ0CxðtÞCOðjxj2Þ,
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where _xZJx and

J Z

KmR1
0 Kb1s

� Kb2s
�

m R 1
0K1

� �
0 0

0 0 b2
1

R1
0

K
1

R2
0

0
@

1
A

0
BBBBBBBB@

1
CCCCCCCCA
:

The overdot signifies time derivative. The matrix J is
the Jacobian matrix of the system (2.4) evaluated at the
steady state ðsðtÞ; i1ðtÞ; i2ðtÞÞZðs�; i�1 ; 0Þ. If J has
eigenvalues, all of which are negative or complex
numbers with negative real parts, then the steady
state is locally stable. Solutions that begin near to the
steady state tend towards it. Otherwise it is unstable.
In this example, the eigenvalues of J are equal to the
eigenvalues of the leading 2!2 submatrix, which
is always stable for R1

0O1, and to the third
diagonal entry. Hence, the steady state is locally stable
if R1

0OR2
0 and unstable otherwise.
A.3. A model with a susceptible R-class

Using Dulac’s criterion,

v

vs

mKbsiKms

si

� �
C

v

vi

bsiCPbriKðmCgÞi
si

� �

ZK
m

s2i
K

Pb
s
!0:

Hence, no limit cycles exist and the non-trivial steady
state is globally stable for R0O1. The steady-state
values of s and i solve

PR2
0i

�2C 1CP m

mCg
KPR0

0
@

1
AR0i

�C
m

mCg
ð1KR0ÞZ0

R0ðPK1Þs�2C 1KP m

mCg
KPR0

0
@

1
As�CP m

mCg
Z0:

Treating R0 as a function of s�, differentiating the last
equation and setting (R0, s

�)Z(1, 1), we obtain

dR0

ds� ð1;1Þ
Z

gP
mCg

K1:

�����
Hence, a backward bifurcation occurs if POPcritZ
1Cm/g. The value of R0 at the saddle node is the
solution of

P2R2
0C ð2KPÞ m

mCg
K1

� �
2PR0C 1KP m

mCg

� �2

Z0:

A.4. A model with exogenous infection

Using Dulac’s criterion,

v
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mKbsiKms

si

� �
C

v
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PbeiCneKmi

si

� �

ZK
m

s2i
K
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s
K

nð1KsÞ
si2

!0:
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Hence, no limit cycles exist and the non-trivial steady
state is globally stable for R0O1. The steady-state
value of i solves

PR2
0i

�2C
n

m
CP n

mCn
KPR0

� �
R 0i

�C
n2ð1KR0Þ
mðmCnÞ Z 0:

Treating R0 as a function of i�, differentiating and
setting (R0, i

�)Z(1, 0), we obtain

dR0

di� ð1;0Þ
Z 1C

m

n
K

m2P
n2

:

�����
Hence, a backward bifurcation occurs if POPcritZ
n(mCn)/m2.
A.5. A model with nonlinear transmission

Dulac’s criterion does not apply here and there are some
functions h(i ) that lead to limit cycles about the non-
trivial steady state (Gomes et al. 2005, theorem 6). The
non-trivial steady-state value of i solves

1

R0ð1Chði�ÞÞC
mCg

m
i� Z 1:

Treating R0 as a function of i�, differentiating and
setting (R0, i

�)Z(1, 0), we obtain

dR0

di� ð1;0Þ
Z 1C

g

m
Kh 0ð0Þ:

�����
Hence, a backward bifurcation occurs if h 0(0)O1Cg/m.
A.6. Models with a carrier class

For these models (equations (3.4) or (4.1)), the
proportion that become carriers upon recovery is an
increasing function of the force of infection, l. We define
a variable xZl/m and set qZq(x)R0, q0(x)R0 for xR0,
and limx/Nq(x)Z1. Hence, we have used m to non-
dimensionalize the argument of the function q. Steady
states of equations (4.1) may be found as a function of x
by substituting for s, setting d/dtZ0 and solving the
resulting linear system. We obtain

c� Z
gqðxÞi�

ð1KkÞmCd
r� Z

g

m
i�Kð1KkÞc�;

and

ðmCgÞð1CxÞ
m

C
kgqðxÞx

ð1KkÞmCd

� �
i� Z x:

This process determines a value for bZmx/(i�CPc�)
and hence R0 may be expressed as a function of x
allowing a bifurcation curve to be drawn. If there is no
vertical transmission (kZ0), then

R0ðxÞZ
mCdCPgqð0Þð Þ 1Cxð Þ

mCdCPgqðxÞ :

A backward bifurcation at (R0, i
�)Z(1, 0) occurs if

POPcritZ(mCd)/(q0(0)Kq(0))g). Another special case
is where q(0)Z0 and the eigenvalues of K are the
matrix diagonals (see equation (4.2)). If b/(gCm)O



Review. The pluses and minuses of R0 M. G. Roberts 959
km/(dCm), then

R 0ðxÞZ
1CxC

m

gCm

kgqðxÞx
ð1KkÞmCd

1CP gqðxÞ
ð1KkÞmCd

:

Note that km/(dCm)!1, so above the threshold
R0Zb/(gCm).

Medley et al. (2001) used qZfC(1K f )
exp(K0.645lK0.455) for some constant f, 0%f%1. The
two parameters given numerical values had previously
been determined from data. As l has units timeK1 this
is problematic, hence we chose q(x)Zexp(KxK1) for the
example presented in figure 2, being in the same spirit
as the function used by Medley et al. (2001).
A.7. A model with two hosts

The model described by equations (4.3) is well posed in
that i fZ0 implies (di f/dt)R0 and i fZ1 implies
(di f/dt)!0, with similar results for im. Limit cycles
are not possible because

v

vi f
ðbmsf imKgf i fÞC

v

vim
ðbfsmi fKgmimÞ

ZKbmimKgfK bfi fKgm!0:

Steady-state solutions solve

Kgf bmsf

bfsm Kgm

 !
i f

im

 !
Z

0

0

 !
:

A non-trivial solution ði f ; imÞZði�f ; i �mÞ is possible only
if the matrix is singular, hence bfbms

�
f s

�
mZgfgm and

i �f Z
ðR0Þ2K1

ðR0Þ2 C bf
gm

i �m Z
ðR0Þ2K1

ðR0Þ2 C bm
gf

R0 Z

ffiffiffiffiffiffiffiffiffiffiffi
bfbm

gfgm

s
:

The Jacobian matrix for the system is

Jði f ; imÞZ
KgfK bmim bmsf

bfsm KgmK bf i f

 !
:

The trace of J is always negative, hence a steady state is
stable if the determinant is positive. At the infection-
free steady state, jJð0; 0ÞjZgfgmK bmbf and we
have stability for R0!1. At the non-trivial steady
state, jJði�f ; i�mÞjO0 and we have stability whenever the
steady state exists, which is when R0O1.
A.8. A model with two hosts and two pathogens

Steady states of the model described by equations (4.4)
solve

Kgf1 bm1sf 0 0

bf1sm Kgm1 0 0

0 0 Kgf2 bm2s f

0 0 bf2sm Kgm2

0
BBBB@

1
CCCCA

i f1

i m1

i f2

i m2

0
BBBB@

1
CCCCAZ

0

0

0

0

0
BBBB@

1
CCCCA:
J. R. Soc. Interface (2007)
For coexistence of the two pathogens, it is necessary
that bf1bm1s

�
f s

�
mZgf1gm1 and bf2bm2s

�
fs

�
mZgf2gm2,

hence R1
0ZR2

0. The steady-state solution with only
one pathogen present is as in the previous section.

The Jacobian matrix for the system is

Kgf1Kbm1i m1 bm1s f Kbm1i m1 0

bf1sm Kgm1Kbf1i f1 0 Kbf1i f1

Kbm2i m2 0 Kgf2Kbm2i m2 bm2s f

0 Kbf 2i f2 bf2sm Kgm2Kbf2i f2

0
BBBB@

1
CCCCA;

which, evaluated at the steady state ði f1; im1; i f2; im2ÞZ
ði �f1; i �m1;0;0Þ, is

Kgf1Kbm1i
�
m1 bm1s

�
f Kbm1i

�
m1 0

bf1s
�
m Kgm1Kbf1i

�
f1 0 Kbf1i

�
f1

0 0 Kgf2 bm2s
�
f

0 0 bf2s
�
m Kgm2

0
BBBB@

1
CCCCA;

with s�f Z1Ki�f1 and s
�
mZ1Ki �m1. The four eigenvalues of

this matrix are the two eigenvalues of each of the leading
and trailing 2!2 submatrices on the diagonal. The
leading matrix is stable if the steady state exists, the
trailingmatrix has a negative trace and the determinant is
equal to

gf2gm2Kbm2bf2s
�
f s

�
mZgf2gm2 1K

R2
0

R1
0

� �
:

Hence, the steady state is stable whenever R1
0OR2

0.
A.9. A model with variable population density

If we represent the number of hosts in an area by N and
the number of infected hosts by I, then the equations for
this model are

dN

dt
Z ðhðNÞKmðNÞÞNKaI ;

dI

dt
Z bðNÞ SI

N
KðaCmðNÞÞI ;

with SCIZN. The equation for the proportion of the
population infected, iZI/N, is then (5.1)2

di

dt
Z

1

N

dI

dt
Ki

dN

dt

� �
Z bðNÞsiKðasChðNÞÞ:

The model described by equations (5.1) is a special case
of that analysed by Roberts & Jowett (1996), who
found four possible steady states: the trivial steady
state (N, i )Z(0, 0) and the infection-free steady state
(N, I )Z(K, 0), which exist for all parameter values; as
well as host extinction and endemic steady states.
The host extinction steady state has NZ0 and iZ
1Kh(0)/(b(0)Ka), hence for 0!i!1, it is necessary
that b(0)/(aCh(0))O1. At the endemic steady state,
R(N �)s�Z1, where ai�Zh(N �)Km(N �) and s�Ci�Z1.
A unique endemic steady-state solution exists if R0O1.
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Using Dulac’s criterion,

v

vN

hðNÞKmðNÞKaið ÞN
Nsi

� �
C

v

vi

bðN ÞsiKðasChðN ÞÞi
Nsi

� �

Z
h0ðNÞKm0ðNÞ

is
K

hðNÞ
Ns2

!0;

and no limit cycles exist.
The Jacobian matrix for the system is

hðNÞKmðNÞKai
C h0ðNÞKm0ðNÞð ÞN KaN

ðb0ðNÞsKh0ðNÞÞi ðbðNÞKaÞðsKiÞKhðNÞ

0
B@

1
CA:

Hence, the steady state (N, i )Z(0, 0) is unstable as
long as h(0)Om(0), which is essential for the population
to grow away from zero. The steady state (N, i )Z
(K, 0) is stable if R0!1 and unstable otherwise. The
Jacobian at the host extinction steady state has
eigenvalues h(0)Km(0)Kai and K(b(0)Ka)i. If this
steady state exists, then b(0)Oa; so for it to be stable, it
is necessary that iO(h(0)Km(0))/a. The Jacobian
matrix at the endemic steady state simplifies to

h0ðN �ÞKm0ðN �Þð ÞN � KaN �

ðb0ðN �Þs�Kh0ðN �ÞÞi� KðbðN �ÞKaÞi�

 !
;

which has negative trace and positive determinant.
Hence, the endemic steady state is always stable when
it exists.
A.10. A model with variable population density
and two pathogens

If we write xZ(N, i1, i2)
0, then equations (5.2) become

dxj
dt

ZFjðxÞxj ;

for jZ1, 2, 3, where

FðxÞZ
hðNÞKmðNÞKa1i1Ka2i2

b1ðNÞð1K i 1K i 2ÞKa1KhðNÞCa1i 1Ca2i 2

b2ðNÞð1K i 1K i 2ÞKa2KhðNÞCa1i 1Ca2i 2

0
B@

1
CA:

This system has the potential for eight different steady
states. These include four with NZ0: the trivial steady
state and host extinction states with either one or both
pathogens present. Setting these aside, the steady
states of interest are (i) x0Z(K, 0, 0)0, the infection-
free steady state where F1(x 0)Zx 2Zx 3Z0, (ii)
x1ZðN �

1; i
�
1; 0Þ0, the steady state with pathogen 1

only present where F1(x1)ZF2(x1)Zx 3Z0, (iii)
x2ZðN �

2; 0; i
�
2Þ0, the steady state with pathogen 2

only present where F1(x2)Zx2ZF3(x2)Z0, and (iv)
x3ZðN ��; i ��1 ; i ��2 Þ0, the coexistence steady state where
F1(x3)ZF2(x3)ZF3(x3)Z0. The first three of these
steady states may be found in the same way that those
for equations (5.1) were found in the previous section.
To find the coexistence steady state, we defineR j(N )Z
bj(N )/(ajCm(N )) for jZ1, 2. For the steady state
to exist, it is then necessary that R1(N

��)s��Z
R2(N

��)s��Z1, which defines s�� and N ��. The
J. R. Soc. Interface (2007)
steady-state infection prevalences are

i ��1 Z
hðN ��ÞKmðN ��ÞKa2ð1Ks��Þ

a1Ka2

i ��2 ZK
hðN ��ÞKmðN ��ÞKa1ð1Ks��Þ

a1Ka2

:

The Jacobian matrix of the system is

JðxÞZ

x1
dF1

dx1
CF1ðxÞ x1

dF1

dx2

x1

dF1

dx3

x2
dF2

dx1

x2
dF2

dx2

CF2ðxÞ x2

dF2

dx3

x3
dF3

dx1

x3
dF3

dx2
x3

dF3

dx3

CF3ðxÞ

0
BBBBBBBBB@

1
CCCCCCCCCA
:

At the infection-free steady state, x0Z(K, 0, 0) 0,

Jðx0ÞZ
ðh0ðKÞKm0ðKÞÞK Ka1K Ka2K

0 b1ðKÞKa1KmðKÞ 0

0 0 b2ðKÞKa2KmðKÞ

0
BB@

1
CCA:

Hence, this steady state is locally stable if R1(K )!1
and R2(K )!1. At the steady state with only pathogen
variant 1 present, x1ZðN �

1; i
�
1; 0Þ0

Jðx1Þ

Z

h0 N �
1ð ÞKm0 N �

1ð Þð ÞN �
1 Ka1N

�
1 Ka2N

�
1

b01 N �
1ð Þs�1Kh0 N �

1ð Þð Þi �1 a1Kb1 N �
1ð Þð Þi �1 a2Kb1 N �

1ð Þð Þi�1
0 0 b2 N �

1ð ÞKa2Km N �
1ð Þ

0
BB@

1
CCA:

As R1ðN �
1 Þs�1Z1, b1ðN �

1 ÞOa1 and the leading 2!2
submatrix of J(x1) have negative eigenvalues. Hence,
this steady state exists ifR1(K )O1 and is locally stable
if R2ðN �

1 Þ!1. Similarly, the steady state with strain 2
only present exists if R2(K )O1 and is locally stable
if R1ðN �

2 Þ!1. Numerical results suggest that the
coexistence steady state x3ZðN ��; i��1 ; i ��2 Þ0 is stable
whenever it exists. Andreasen & Pugliese (1995) proved
local stability of the coexistence equilibrium of the
special case of this model that they analysed.
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